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Abltract-A study is made of the flutter and divergence instabilities of a rectangular plate with two
independent loading parameters. The plate is subjected to the combined action of a tangential follower
force and a unidirectional axial force along one edge. Two opposite sides of the plate are simply supported,
one side being clamped and the other being a free edge where the in-plane forces act. Depending on the
relative magnitudes of the follower and axial forces, the plate may lose its stability by flutter or divergence.
The flutter problem is solved by maximizing the flutter load over the frequency and thereby obtaining the
maximum point of an eigencurve. The stability boundaries are given for plates with di1ferent aspect ratios.

The two-dimensional nature of the problem reveals some interesting results not observed in the
one-dimensional counterpart of the problem, which is a cantilevered column under vertical and follower
forces.

The effect of an elastic foundation on the stability boundaries are determined. The influence of
Poisson's ratio on the flutter load and frequency is investigated. It is shown that no general rule can be
formulated as to the effect of Poisson's ratio on the flutter load, and that this effect will vary according to
the aspect ratio and axial load.

I. INTRODUCTION

Owing to its importance in many and diverse fields of technology and engineering, the
elastic stability of nonconservatively loaded structures has been the subject of a large number
of investigations, beginning with Beck's[l] now classical paper published in 1952.

The physical origins of nonconservative forces have been discussed by Herrmann[2], where
various experimental studies of the subject were also reported. Reviews of the field are given in
[3,4] covering the periods before 1%7 and 1975, respectively. Recent books by Huseyin[5] and
Leipholz[6] provide up-to-date treatments of the elastic stability of nonconservative systems.

A characteristic feature of a structure under a follower load is the possibility that the
structure may lose its stability owing to flutter. In such a case, a dynamic analysis of the
problem is required to determine the critical flutter load. MathematicallY, the dynamic analysis
corresponds to the solution of an eigenvalue problem with double characteristic values which
correspond to the flutter load and frequency in the physical problem.

Recently, attention has been devoted to the stability of structures subjected to the combined
action of both nonconservative and conservative forces [2, 7-17]. Such a system can exhibit
both flutter and divergence instability, depending on the relative magnitudes of the tangential and
axial components of the forces acting on the system. These investigations revealed many
interesting features of nonconservative stability problems, examined the transition of the
system from divergence to flutter, and suggested possible ways of stabilizing a structure by the
application of compressive or tensile follower forces.

The papers [2, 7-17] exclusively dealt with one-dimensional problems, among which special
attention was devoted to the continuous case, i.e. that comprising beams, columns, and circular
plates [2, 7-17]. In fact, studies of the stability of two-dimensional undamped structures have
been rather scarce. Petterson[l8] and Farshad[l9] studied the stability of plates under subtan­
gential follower loads. Leipholz[6,20-22] studied a simply supported plate under a distributed
tangential load, and a plate simply supported on three sides and free on the fourth, where a
tangential edge load acts. In these two cases, the plates lose their stability only by divergence.
Flutter instability was observed for clamped-free plates with two opposite edges simply
supported and under a follower force acting at the free edge[23]. Using Liapunov's second
method, Leipholz[24-26] investigated the asymptotic stability of damped plates.

In the present paper, we determine the stability regions of a rectangular plate subjected to a
tangential follower force and a unidirectional axial force. In particular, we obtain the flutter and
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divergence boundaries of a plate simply supported along two opposite sides and clamped-free
along the remaining sides, with the forces acting on the free edge. The numerical solution of the
flutter problem is obtained by maximizing the flutter load over the frequency for a given axial
load. This formulation permits the use of available function minimization routines and simplifies
the solution of the characteristic equation. Previously, this problem was solved by computing
the roots of a system of two nonlinear algebraic equations[l-23].

The numerical results indicate some interesting features of two-dimensional noncon­
servative systems. For example, for sufficiently high aspect ratios, the flutter load increases
with increasing axial load after reaching a minimum.

The effect of an elastic foundation and the variation in Poisson's ratio on the flutter load and
frequency are also studied. It is shown that the stability boundaries of a plate supported by an
elastic foundation consists of a new divergence boundary and parts of the flutter boundary of
the unsupported plate. Although Poisson's ratio has a considerable influence on the magnitude
of the flutter load, no general rule can be formulated as to how this effect will vary with, say,
increasing Poisson's ratio.

2. PROBLEM FORMULATION

We consider an isotropic, rectangular plate of length a, width b, thickness h, mass per unit
area p, Poisson's ratio II and Young's molulus E. The transverse displacement of its median
surface is denoted by W(X, Y, t), where X, Yare the Cartesian coordinates along two
orthogonal sides, and t is the time (Fig. 1). We take the edges Y = 0 and Y = b simply
supported, the edge X = 0 clamped and the edge X = a free. The free edge is subjected to a
tangential follower force Po and an axial force No, both of which are uniformly distributed
along the edge. The small transverse vibrations of the plate are governed by the differential
equation

subject to the boundary conditions

(I)

w=o,

W=o, a2w a2w
aYz +II axz=0 at Y =0, b

aw =0 at X =0ax

(2)

(3)

(4)

y

b

......L..-4Ii""'..:.:.:.:.-_-_-_:.:.-_-_:.-a-_:':':'--:'--:':':':':':'--1-+--- x
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._.~._._._.__• - X

h No

Po

Fig. 1. The geometry and loading of the plate.
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where D = Eh 3/12(1- v~ is the flexural rigidity of the plate and the compressive edge forces
are taken as positive.

Assuming a steady-state free vibration mode of the form

W(X, Y, t) =Wo(X, Y) emf (5)

we separate the space and time coordinates in eqn (I). In eqn (5), n denotes the frequency of
vibration. We introduce the following dimensionless quantities:

c = alb, x = X/a, Y= Y/b, w = Wola,
P = Poa2/D, N = Noa2/D, (02= pn2b4/D.

Substituting (5) and (6) into (1)-(4), we obtain the dimensionless governing equation

subject to

(6)

(7)

w=o, a2w a2w
C2a?"+ II ax2 =° at y =0,1,

aww=O, -=0 atx=Oax '
alw 2 alw aw
ax] +c (2-v) axal+ N ax =0 at x = 1.

(8)

(9)

(10)

3. METHOD OF SOLUTION

A Levy-type solution can be applied to the present problem, viz.

w(x, y) = z(x) sin m1TY, m = 1,2, ... (It)

which satisfies the boundary conditions (8). Inserting (It) into (7), (9) and (10), we obtain

subject to

z(O) =0, ~JCz(O) = 0, ~/z(l) - vc2m21T2z(l) = 0

~/z(l)+(N +c2m21T~v - 2»~JCz(l) =0

(12)

(13)

(14)

where ~x =dldx. The solution of eqn (12) has the general form z(x) =eTX where the complex
number , is the root of the equation

(IS)

From (IS) it follows that

(16)

where at =N +P - 2c2m21T2, a2 =c4(m41T4- (O~. Depending on the relative magnitudes of a\
and a2, the solution z(x) of eqn (12) is given by ditterent expressions.

Case L at
2 > 48:z

In this case, the roots 'l of (15) are either pure imaginary or real numbers. When N + P >
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'lf2, we have
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(17)

(18)

m1= (St - (S\2 - 4SVI/~1/2/21/2, m2 = (S\ +(S/ - 4SVI/~1/2/21/2

m3 = «S/- 4SVI/2 - S,)1/2/21/2. (19)

(20)

(21)

Case II. fJ t
2 > 4fJ2

In this case, the roots 'j of (15) are complex numbers with nonzero real and imaginary parts
and are given by '1.2 =±«2S~/2 - S\)1/2 + i(2S~/2 + S\)I/~/2, '3,4 ='1,2, with bar denoting the com­
plex conjugates. The solution is given by

(22)

where

By inserting the solution z(x), determined by (17)-(22) depending on the values of the problem
parameters, into (13) and (14), we obtain a linear system of four homogeneous algebraic
equations in the unknowns Cj, i = 1, ... ,4. For a nontrivial solution, the determinant of this
system should be equal to zero. The resulting nonlinear, transcendental equation

[(P, N, w; v, c, m) = 0 (23)

is called the characteristic equation of the problem, the roots of which equation give the flutter
and divergence loads P and N, and the flutter frequency w for specified values of the problem
parameters v and c. Eqn (23) describes the characteristic hypersurfaces of the problem in the
three-dimensional (P, N, w)-space, among which hypersurfaces the one closest to the origin is
called the fundamental characteristic surface. The projection on the subspace w = 0 of the
(P, N, w)-space of the fundamental characteristic surface provides the stability boundaries of
the plate in the loading plane (P, N). The main objective of the present study is to determine
these stability boundaries.

In the case of divergence instability, the critical values of P and N are computed by setting
w = 0 in (23) and solving the resulting equation for P or N for a given value of N or P, respectively.
Thus, a static stability analysis is sufficient to determine the divergence boundaries.

In the case of flutter instability, w'; 0 is an unknown of the problem and should be computed
together with P for a given value of N as the double eigenvalues of the problem (12)-(14). In
this calculation, we make use of the well-known fact that two vibrational modes of the plate
coalesce at the critical values of P and w in the (P, w)-plane[5] and (P, w) are the coordinates
of the maximum point of the corresponding eigencurve.

Customarily, this condition, i.e. iJP/iJw =0 at the flutter load, is used to derive a second
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equation a/law =0 from (23)[5]. Subsequently, the two equations are simultaneously solved for
the unknowns P and w. In our case, the complicated form of /(P, N, w; II, C, m), due to the
combinations of z(x) given by (l7)-{22) causes this method of computing to be somewhat
cumbersome. Instead, we pose the problem as an optimization problem by noting that P
reaches a maximum at the critical value of w. This observation suggests a computational
scheme by which P and w are determined from the solution of the problem

maxP(w) (24)
OJ

where for any given value of w, P is the coordinate on the eigencurve and is found from (23).
Problem (24) can be solved by a nonlinear function maximization routine which does not

require an explicit evaluation of the derivative allaw.

4. STABILITY BOUNDARIES

We determine the roots of the characteristic equation (23) by the method of bisection when
two of the parameters P, N and w are specified and the third is an unknown. The flutter load P
and the corresponding frequency w are computed by solving the problem (24) by using a
quasi-Newton function maximization routine.

The lowest flutter loads P for all values of N are obtained when the first and second roots
of w coalesce when m =1. There appears to be a typographical error in [23] where it is noted
that 'the second and third roots approach each other' for this problem with N = O.

On the other hand, the value given in [23] for the flutter load is 0.0192 when N = 0,
alb =1/3.0641 and in our dimensionless variable it is P =12(alh)1>.0192 =23.04 where alh =
10.0. This value agrees very well with P = 22.99 obtained in our case.

The stability boundaries of the plate are shown in Fig. 2 for the aspect ratios alb =0.5, 1.0,
1.5 and alb = 0.0, which corresponds to a clamped-free column. Throughout this section we
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Fig. 2. Stability boundaries of the plates with aspect ratios alb =0.0,0.5, 1.0. 1.5 and v =OJ.
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take v =0.3. The results for the cantilever column are given here for comparison purposes and
can also be found in [7, 16J where a characterization of follower and axial loads different from
ours was used.

In the limit as alb -+0, the stability boundary of the plate converges to that of the column.
This is a physically expected result, since the influence of the simply supported boundaries at
Y = 0 and b diminishes as alb -+ O.

The behaviour of the divergence boundary for cantilever columns was known in the case of
concentrated loads[7, 16J and distributed 10ads[l0, 12, 14J. A mechanical interpretation of the
increase in stability when P > 0, and decrease when P < 0, was given in [10, 27J. This
explanation seems to be valid also for two-dimensional structures.

The stability boundaries of the plates with alb ",,0.5 and alb;;:, 1.0 show a marked difference.
The flutter boundary when alb;;:, 1.0 reaches a minimum point before contacting the divergence
boundary. In other words, the flutter load decreases with increasing axial load N up to a certain
point, and thereafter increases with increasing N up to the contact point, a phenomenon not
observed in the case of columns with any combination of boundary conditions or loading
distributions[7, 10-14, 16). This is an intuitively unexpected result and it seems that as the effect
of unloaded boundaries becomes more prominent, i.e. as alb increases, the two-dimensional
character of the problem becomes more effective and leads to the type of flutter boundaries
shown in Fig. 2.

We remark that the second branch of the divergence boundary, which is of only theoretical
importance, turns to a flutter boundary for sufficiently large N when alb = 1.0.

Figure 2 corresponds to the loading plane (P, N) of the (P, N, cu)-space, and as such gives the
boundary of the projection of the characteristic surfaces f(P, N, cu; v, c, m) = 0 on the subspace
cu = 0. In the case of a divergence boundary, we always have cu =0, and consequently the
characteristic surface emanating from this boundary is a cylinder in the (P, N, cu)-space.

Figure 3 shows the curves of P plotted against bla for various values of N, together with
the limiting values at bla =00. The curve for N =0 was given in [23J.

5. PLATE ON AN ELASTIC FOUNDATION

Smith and Herrmann[28] have shown that a Winkler-type foundation has no effect on the
critical flutter load of a cantilever column under a follower force. Subsequently, various aspects
were investigated of nonconservatively loaded one-dimensional structures attached to an elastic
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Fig. 3. Curves of the flutter load plotted against the ratio bla with v = 0.3.



Stability of a rectangular plate under nonconservative and conservative forces 1049

foundation [29-31]. Although an elastic foundation does not influence the magnitude of the
flutter load and only causes a shift of the value of the flutter frequency, it changes the stability
boundaries of the structure. In the present problem, the flutter boundary extends in the
direction of increasing axial load and consequently the divergence boundary also changes.

We denote the elastic foundation modulus by K. With a solution of the form given by (11),
the differential equation now is

(25)

where the dimensionless quantity k is given by k =b4KID and w. is the flutter frequency. The
boundary conditions (13) and (14) remain the same.

Upon comparing (12) and (25), it becomes clear that the effect of the foundation is to
increase the frequency parameter by an amount k, i.e. the new flutter frequency w/ is given by
w/ = w2 +k. Consequently, at the contact point of the flutter and divergence boundaries where
w= 0 for k = 0, w/ = k:f:. 0, and the flutter boundary extends with increasing N up to the point
where w/= O.

We illustrate these points in Fig. 4, where the stability boundaries in the first quadrant are
given for a square plate with v =0.3 and foundation moduli k =0, 50, 100, 150, 200. We observe
that the values of P and N at the contact point increase with increasing k. Part of the flutter
boundary to the left of the point where w =0, k =0, remains the same for any k > 0, but the
divergence boundary is different for each k.

6. EFFECT OF POISSON'S RATIO

In the mathematical formulation (11H16) of the problem, Poisson's ratio v appears
explicitly only in the boundary conditions (13) and (14) which apply at the loaded edge x = 1.
However, the dimensionless parameters, P, Nand w implicitly depend upon v through the term
D =Eh3/l2(1- v~ to which they relate by eqn (6). In order to observe the influence of v, which
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Fig. 4. Stability boundaries of a square plate resting on an elastic foundation of modulus k with II = OJ.
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can vary between 0.0 and 0.5 for isotropic materials, on load and frequency parameters which
are independent of v, we introduce the dimensionless quantities

(26)

From (6) and (26) it follows that

(27)

Clearly, the quantities P, Nand w depend on v only through the boundary conditions at x = I,
whilst P, IV and c.ij depend on v through the dUferential equation (12) owing to the substitution
of (27) into (12), and through the boundary conditions at x = I.

Table I gives the values of P and w for various values of N with v = 0.0, 0.3, 0.5 and
alb =0.5, 1.0. We observe that P increases with increasing v for N =-20, alb =0.5 and for
N =-20, -10, alb = 1.0, and decreases for higher values of N. The flutter frequency w

increases with increasing v for N =- 20, -10, 0 but decreases for N =10 when alb = 0.5. The
behaviour of w is more complicated when alb =1, in which case it shows a non-monotonic
behaviour for N =- 20, -10, increases for N =0, 10, and decreases for N = 20 with increasing
v.

Leissa[32] notes that the effect of v on the free vibration frequencies of plates was
investigated for only some of the boundary conditions and that only one mode of the plate with
all edges free has increasing frequency parameter w with increasing v. In the present problem,
the variation of P and w with v depends largely on the magnitudes of N and alb, and no
general conclusions can be drawn.

Table 2 gives the values of P and cii for various values of IV with v = 0.0, 0.3, 0.5 and
alb = 0.5, 1.0. We observe that the variation with v of P and cii, which reflect the actual
magnitudes of the follower load and the flutter frequency, is more uniform as compared with

Table I. The effect of Poisson's ratio v on the flutter load P and frequency Cd

alb = 1.0

0.0 0.3 0.5

77 .87 81.33 85.75

15.28 15.47 14.89

65.71 68.01 71.86

15.43 15.99 15.76

alb: 0.5

v 0.0 0.3 0.5

N : -20

59.50 59.67 59.82

t·) 48.78 49.97 50.70

N : -10

p 45.37 44.78 44.32

w 49.22 50.90 52.01

N : 0

p 28.87 27.11 25.80

CJ 47.96 49.58 50.52

52.40

15.55

51.65

16.67

50.57

17.44

~

11.71 10.30 9.60 37.12 30.65 24.14

w 38.19 36.65 34.92 15.53 16.91 17 .36

~

p 19.59 12.59 10.99

w 14.75 14.36 12.59
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Table 2. The effect of Poisson's ratio /I on the Butter load P and frequency 6i

alb· 0.5 alb. 1.0

v 0.0 0.3 0.5 0.0 0.3 0.5

N= -20

Ii 59.50 62.82 69.91 77 .87 86.88 105.62

w 48.78 52.60 59.40 15.28 16.30 17 .62

N = -10

Ii 45.37 47.59 53.26 65.71 73.29 90.17

"'
49.22 53.39 60.18 15.43 16.82 18.58

~

Ii 28.87 29.79 34.41 52.40 56.76 67.43
- 47.69 51.97 58.34 15.55 17.48 20.14'"

~ = 10

Ii 11.71 12.60 16.95 37.12 35.85 39.74
.

38.19 40.81 47.99 15.53 17.78 20.55w

N = 20

Ii 19.59 16.51 20.78
- 14.75 15.88 18.05w

that of P and (a). P and cii increase with increasing II for all values of Nand alb, excpet that P
first decreases and then increases when N =10, 20 and alb =1.0.

That the frequency increases with increasing II could reasonably have been expected, but it
is not possible to make a general statement about the effect of II on the ftutter load P. We note
that the rate of increase of P and cii'itself increases as II approaches the upper limit II =0.5.

7. CONCLUDING REMARKS

By exact analysis, a study has been made of the loss of stability, by ftutter and divergence,
of a rectangular plate subjected to nonconservative and conservative edge loads.

The effect of an elastic foundation on the stability boundaries was determined. The effect of
Poisson's ratio on the ftutter load and frequency was examined for various axial loads and
aspect ratios.

It was found that the aspect ratio has a strong qualitative and quantitative inftuence on the
stability boundaries. For example, for sufficiently large aspect ratios, the ftutter load increases
with increasing axial load after having reached a minimum value, i.e. the ftutter load has a
minimum point with respect to the conservative load.

This rather unexpected phenomenon is difficult to explain intuitively and does not seem to
apply to one-dimensional structures [2, 5-17]. This observation has implications in determining
the combination of follower and unidirectional axial forces which may stabilize or destabilize a
two-dimensional structure.

The effect of an elastic foundation on the stability boundaries was studied and these
boundaries are determined for a square plate for various values of the foundation moduli, Also
investigated was the inftuence of Poisson's ratio O:EO; II :EO; 0.5 on the ftutter load and the
frequency. It was found that the only general conclusion is the increase in the ftutter frequency
of the plate with increasing II. The ftutter load may increase, decrease or become non­
monotonic with increasing II, depending on the magnitude of the axial load and/or the aspect
ratio.
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